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A Short History of Static Program Analysis

e Early high-level programming languages were implemented on very
small and very slow machines.

e Compilers needed to generate executables that were extremely
efficient in space and time.

e Compiler writers invented efficiency-increasing program
transformations, wrongly called optimizing transformations.

e Transformations must not change the semantics of programs.
e Enabling conditions guaranteed semantics preservation.

e Enabling conditions were checked by static analysis of programs.



Theoretical Foundations of Static Program Analysis

e Theoretical foundations for the solution of recursive equations:
Kleene (30s), Tarski (1955)

e Gary Kildall (1972) clarified the lattice-theoretic foundation of
data-flow analysis.

e Patrick Cousot (1974) established the relation to the
programming-language semantics.



Static Program Analysis as a Verification Method

e Automatic method to derive invariants about program behavior,
answers questions about program behavior:
— will index always be within bounds at program point p?
— will memory access at p always hit the cache?

e answers of sound static analysis are correct, but approximate: don’t
know i1s a valid answer!

e analyses proved correct wrt. language semantics,



1 Introduction

a simple imperative programming language with:

variables

R =e¢;

R = Mle];
Mlei] = es;

if (e) s1 else sy
goto L;

//
//
//
//
//
//

registers

assignments

loads

stores

conditional branching

no loops

An intermediate language into which (almost) everything can be

translated. In particular, no procedures. So, only intra-procedural

analyses!



2 Example — Rules-of-Sign Analysis

Problem: Determine at each program point the sign of the values of all
variables of numeric type.

Example program:

1: x = 0;

2:y = 1;

3: while (y > 0) do
4 vy =y + X;
S x =x + (-1);



Program representation as control-flow graphs

true(y>0) false(y>0)

&)

Y = y+X

X = X+(-1)




We need the following ingredients:
e a set of information elements, each a set of possible signs,

e a partial order, “C.”, on these elements, specifying the “relative
strength” of two information elements,

e these together form the abstract domain, a lattice,

e functions describing how signs of variables change by the execution
of a statement, abstract edge effects,

e these need an abstract arithmetic, an arithmetic on signs.



We construct the abstract domain for single variables starting with the
lattice  Signs = 2101} with the relation “C” =“C”.

{

} {0} {+}




The analysis should ”bind” program variables to elements in Signs.
So, the abstract domain is D = ( Vars — Signs)_, a Sign-environment.
| € D is the function mapping all arguments to { }.

The partial order on D is Dy C D, 1iff
D=1 or
Dyx C Dyx  (x€ Vars)

Intuition?
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The analysis should ”bind” program variables to elements in Signs.
So, the abstract domain is D = ( Vars — Signs) . a Sign-environment.
| € D is the function mapping all arguments to { }.

The partial order on D is Dy C D, 1iff
D=1 or
DiyxC Dy (x€ Vars)

Intuition?

D 1s at least as precise as D, since Dy admits at least as many signs as
Dy
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How did we analyze the program?

\
0 In particular, how did we walk the
lattice for y at program point 5?

true(y>0) false(y>0)

&

y = y+X

&)

X = X+(-1)
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How 1s a solution found?

Iterating until a fixed-point 1s reached

y

true(y>0) false(y>0)

&

Y = y+X

X = X+(-1)
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Idea:

e We want to determine the sign of the values of expressions.
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Idea:

e We want to determine the sign of the values of expressions.

e For some sub-expressions, the analysis may yield {+, —,0},
which means, it couldn’t find out.
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Idea:

e We want to determine the signs of the values of expressions.

e For some sub-expressions, the analysis may yield {+, —,0},
which means, it couldn’t find out.

e  We replace the concrete operators [ working on values by
abstract operators *  working on signs:
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Idea:

e We want to determine the signs of the values of expressions.

e For some sub-expressions, the analysis may yield {+, —,0},
which means, it couldn’t find out.

e  We replace the concrete operators [ working on values by
abstract operators *  working on signs:

e The abstract operators allow to define an abstract evaluation of
expressions:

[e]* : (Vars — Signs) — Signs
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Determining the sign of expressions in a Sign-environment works as

follows:
({4} ife>0
[c]* D = 4§ {—} ifc<0
| {0} ifc=0
]t ~ D(v)

:61 ] 62]]ﬂ D = [[61]]11 D Dﬂ [[62]]]:i D
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Abstract operators working on signs (Addition)

{-,

_|_#

{0}

{+}

{-)

0}

{-,

+}

{0, +}

{_, Oa +}

{0}
{+}
-1
(-, 0}
{- +}
{0, +}
- 0, +]

10}

{_’ O’ +}

+}
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Abstract operators working on signs (Multiplication)

x 7 {0y {+ 1 -0y {-+ {0,+} {-0,+}
{0} {0} {0}
{+}
{-}
{-, 0}
{-, +}
{0, +}
{-.0,+} | 10}
Abstract operators working on signs (unary minus)
=71 {0y {+} (-} -0} {-+} {0+} {-0,+)
0y -+ 0 {-+ {0,-}  {-0,+]
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Working an example: D={z—={+}yr{+}}

[+ 7] D = [«]*D +* [7]* D
= {+h + )
= {+}

[+ +(—9)FD = {+} + (Z[I' D)
= {+} +F (D)
= {+} + {~}
= {+ -0
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[lab]* is the abstract edge effects associated with edge k.
It depends only on the label lab:

;P D = D

true (e)]* D = D

false (e)]* D = D

v =e]*D = D@ {rw~ [e]* D}

v =Mle]'D = D& {z— {+,—,0}}
Mle)| =e:]*D = D

... whenever D # 1
These edge effects can be composed to the effect of apath m = k... &k,

[7]F = [k,]F o. ..o [ki]
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Consider a program node v:

—  For every path 7 from program entry start to v the analysis should
determine for each program variable x the set of all signs that the
values of x may have at v as a result of executing .

—  Imitially at program start, no information about signs 1s available.

—  The analysis computes a superset of the set of signs as safe
information.

—— For each node v, we need the set:

S = U{[[ﬂ']]ﬂJ_ | 71 start =" v}
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Question:

How do we compute S|u] for every program point «?

24



Question:

How can we compute S|u| for every program point «?

Collect all constraints on the values of S|u| into a system of constraints:

S|start]
Sl 2 [k (S[ul) k= (u,_,v) edge

U
-
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Wanted:

e aleastsolution (why least?)

e an algorithm that computes this solution

Example:
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>
false(y>0)
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0] @ {x — {0}}
e {y—{+}}
sl@ {z = [o+ (-1 S[E]}

2]
4@ {y— [y+ 2] SHf}



