Sebastian Hack, Christtan Hammer, Jan Reineke

Saarland University

Static Program Analysis
Introduction

Winter Semester 2014
Slides based on:

e H. Seidl, R. Wilhelm, S. Hack: Compiler Design, Volume 3, Analysis and
Transformation, Springer Verlag, 2012

e F. Nielson, H. Riis Nielson, C. Hankin: Principles of Program Analysis, Springer
Verlag, 1999

e R. Wilhelm, B. Wachter: Abstract Interpretation with Applications to Timing
Validation. CAV 2008: 22-36

e Helmut Seidl’s slides

A Short History of Static Program Analysis

e Early high-level programming languages were implemented on very
small and very slow machines.

e Compilers needed to generate executables that were extremely
efficient in space and time.

e Compiler writers invented efficiency-increasing program
transformations, wrongly called optimizing transformations.

e Transformations must not change the semantics of programs.
e Enabling conditions guaranteed semantics preservation.

e Enabling conditions were checked by static analysis of programs.

Theoretical Foundations of Static Program Analysis

e Theoretical foundations for the solution of recursive equations:
Kleene (30s), Tarski (1955)

e Gary Kildall (1972) clarified the lattice-theoretic foundation of
data-flow analysis.

e Patrick Cousot (1974) established the relation to the
programming-language semantics.

Static Program Analysis as a Verification Method

e Automatic method to derive invariants about program behavior,
answers questions about program behavior:
— will index always be within bounds at program point p?
— will memory access at p always hit the cache?

e answers of sound static analysis are correct, but approximate: don’t
know i1s a valid answer!

e analyses proved correct wrt. language semantics,

1 Introduction

a simple imperative programming language with:

variables

R =e¢;

R = Mle];
Mlei] = es;

if (e) s1 else sy
goto L;

//
//
//
//
//
//

registers

assignments

loads

stores

conditional branching

no loops

An intermediate language into which (almost) everything can be

translated. In particular, no procedures. So, only intra-procedural

analyses!

2 Example — Rules-of-Sign Analysis

Problem: Determine at each program point the sign of the values of all
variables of numeric type.

Example program:

1: x = 0;

2:y = 1;

3: while (y > 0) do
4 vy =y + X;
S x =x + (-1);

Program representation as control-flow graphs

true(y>0) false(y>0)

&)

Y = y+X

X = X+(-1)

We need the following ingredients:
e a set of information elements, each a set of possible signs,

e a partial order, “C.”, on these elements, specifying the “relative
strength” of two information elements,

e these together form the abstract domain, a lattice,

e functions describing how signs of variables change by the execution
of a statement, abstract edge effects,

e these need an abstract arithmetic, an arithmetic on signs.

We construct the abstract domain for single variables starting with the
lattice Signs = 2101} with the relation “C” =“C”.

{

} {0} {+}

The analysis should ”bind” program variables to elements in Signs.
So, the abstract domain is D = (Vars — Signs)_, a Sign-environment.
| € D is the function mapping all arguments to { }.

The partial order on D is Dy C D, 1iff
D=1 or
Dyx C Dyx (x€ Vars)

Intuition?

10

The analysis should ”bind” program variables to elements in Signs.
So, the abstract domain is D = (Vars — Signs) . a Sign-environment.
| € D is the function mapping all arguments to { }.

The partial order on D is Dy C D, 1iff
D=1 or
DiyxC Dy (x€ Vars)

Intuition?

D 1s at least as precise as D, since Dy admits at least as many signs as
Dy

11

How did we analyze the program?

\
0 In particular, how did we walk the
lattice for y at program point 5?

true(y>0) false(y>0)

&

y = y+X

&)

X = X+(-1)

12

How 1s a solution found?

Iterating until a fixed-point 1s reached

y

true(y>0) false(y>0)

&

Y = y+X

X = X+(-1)

13

Idea:

e We want to determine the sign of the values of expressions.

14

Idea:

e We want to determine the sign of the values of expressions.

e For some sub-expressions, the analysis may yield {+, —,0},
which means, it couldn’t find out.

15

Idea:

e We want to determine the signs of the values of expressions.

e For some sub-expressions, the analysis may yield {+, —,0},
which means, it couldn’t find out.

e We replace the concrete operators [working on values by
abstract operators * working on signs:

16

Idea:

e We want to determine the signs of the values of expressions.

e For some sub-expressions, the analysis may yield {+, —,0},
which means, it couldn’t find out.

e We replace the concrete operators [working on values by
abstract operators * working on signs:

e The abstract operators allow to define an abstract evaluation of
expressions:

[e]* : (Vars — Signs) — Signs

17

Determining the sign of expressions in a Sign-environment works as

follows:
({4} ife>0
[c]* D = 4§ {—} ifc<0
| {0} ifc=0
]t ~ D(v)

:61] 62]]ﬂ D = [[61]]11 D Dﬂ [[62]]]:i D

18

Abstract operators working on signs (Addition)

{-,

|#

{0}

{+}

{-)

0}

{-,

+}

{0, +}

{_, Oa +}

{0}
{+}
-1
(-, 0}
{- +}
{0, +}
- 0, +]

10}

{_’ O’ +}

+}

19

Abstract operators working on signs (Multiplication)

x 7 {0y {+ 1 -0y {-+ {0,+} {-0,+}
{0} {0} {0}
{+}
{-}
{-, 0}
{-, +}
{0, +}
{-.0,+} | 10}
Abstract operators working on signs (unary minus)
=71 {0y {+} (-} -0} {-+} {0+} {-0,+)
0y -+ 0 {-+ {0,-} {-0,+]

20

Working an example: D={z—={+}yr{+}}

[+ 7] D = [«]*D +* [7]* D
= {+h +)
= {+}

[+ +(—9)FD = {+} + (Z[I' D)
= {+} +F (D)
= {+} + {~}
= {+ -0

21

[lab]* is the abstract edge effects associated with edge k.
It depends only on the label lab:

;P D = D

true (e)]* D = D

false (e)]* D = D

v =e]*D = D@ {rw~ [e]* D}

v =Mle]'D = D& {z— {+,—,0}}
Mle)| =e:]*D = D

... whenever D # 1
These edge effects can be composed to the effect of apath m = k... &k,

[7]F = [k,]F o. ..o [ki]

22

Consider a program node v:

— For every path 7 from program entry start to v the analysis should
determine for each program variable x the set of all signs that the
values of x may have at v as a result of executing .

— Imitially at program start, no information about signs 1s available.

— The analysis computes a superset of the set of signs as safe
information.

—— For each node v, we need the set:

S = U{[[ﬂ']]ﬂJ_ | 71 start =" v}

23

Question:

How do we compute S|u] for every program point «?

24

Question:

How can we compute S|u| for every program point «?

Collect all constraints on the values of S|u| into a system of constraints:

S|start]
Sl 2 [k (S[ul) k= (u,_,v) edge

U
-

25

Wanted:

e aleastsolution (why least?)

e an algorithm that computes this solution

Example:

26

>
false(y>0)

27

I O O (O (U (GRR

|_

S
S

0] @ {x — {0}}
e {y—{+}}
sl@ {z = [o+ (-1 S[E]}

2]
4@ {y— [y+ 2] SHf}

