>

Static Program Analysis
Foundations of Abstract Interpretation

Sebastian Hack, Christian Hammer, Jan Reineke

Advanced Lecture, Winter 2014/15

Abstract Interpretation

o Semantics-based approach to program analysis

o Framework to develop provably correct and terminating
analyses

Ingredients:
o Concrete semantics: Formalizes meaning of a program
o Abstract semantics

o Both semantics defined as fixpoints of monotone
functions over some domain

o Relation between the two semantics establishing
correctness

Concrete Semantics

Different semantics are required for
different properties:

o “Is there an execution in which
the value of x alternates between
3 and 57" =» Trace Semantics_

o “Is the final value of x always the
same as the initial value of x?”
=> “Input/Output” Semantics

o “May x ever assume the value 45
at program point 7?”
= Reachability Semantics

\‘
o
wn
~—~
°X°
N
/
=

o

4

I g
°~°

=

T

=
I
: ° ¢
X
o

<
I
)

5)

—

X
]
~ | x

O Concrete Semantics

tates that the program may execute.

J < o Input/Output Semantics: Captures the pairs of
?__Ai initial and final states of execution traces.

- —>.—.

3 ._5,__3_)_0 race Semantics. Captures set of traces of

../’ Abstraction of Trace Semantics

o Reachability Semantics: Captures the set of
reachable states at each program point

Abstraction of Trace Semantics

Reachability Semantics

Captures the set of reachable states at each
program point. Formally: Reach: V — P(States)

Example

g 3174 STEYS=T @ x\in {.. /°2,-1,0\1, 2, ..}
- - Z,A-\’l §

x \in {Y & .1 90}9@7 Neg(x < 100) @ x?in—;ﬂﬂ)?}

Pos(x < 100)

X =x+1

O Reachability Semantics

Can be captured as the least solution of:
Reach(start) = States
Yo' € V' \ {start} : Reach(v') = U [labeling(v,v")](Reach(v))

veV,(v,vw)EFE

@ Reach(1) = [labeling(start, 1)](Reach(start)) U [labeling(2, 1)] (Reach(2))
Reach(2) = [labeling(1,2)](Reach(1))
Reach(3) = [labeling(1 |)](Reach(1))

Reach(1) = [x = 0] (Reach(start)) U [x = x + 1] (Reach(2))
Reach(2) = [Pos(z < 100)](Reach(1))
Reach(3) = [Neg(x <@ach(l))

Reach(2) =|Reach(1) N {...,98,99}
Reach(3) =|\Reach(1) N {100, 101, ..

| Reach(1) =[{0}U{v+1|ve Reach(2)})

Questions

o Why the least solution?

o Is there more than one solution?

o Is there a unique least solution?

o Can we systematically compute it?

x=0

@—{Neg(x < 100)|—>®

[Pos(x < 100)]

X =x+1

Answers

o Is there more than one solution? Often
o Is there a unique least solution? Yes
o Can we systematically compute it? Yes and No

x=0

@—{Neg(x < 100)|—>®

[Pos(x < 100)]

X =x+1

Why? Knaster-Tarski Fixpoint Theorem

THEOREM 1 (KNASTER-TARSKI, 1955).
Assume (D, <) is a complete lattice. Then every monotonic
function f : D — D has a least fixed point dg € D.

Raises more questions:

o What is a complete lattice?

o What is a monotonic function?
o What is a fixed point?

Monotone Functions

Let (D, <) be partially-ordered set.
For example: D = N and < the order on natural numbers.

Function f: D — D is monotone (order-preserving) iff
for all dl,dz ecD:di <dy = f(dl) < f(dz)

Examples:
flz) == /
glz)=—-z X
TLG) =—x—1 Which of these are monotone?

FX)={f(zx)|re X} X<VY
GX)={y|xe XA (x,y) € R}

Need to know what the order is.

Partial Orders

A binary relation <: D X D is a partial order, iff for all
a,b,c € D, we have that:

~Nat
e a < a (reflexivity),
e if a < band b < athen a =b (antisymmetry),

e if a < band b < cthen a < ¢ (transitivity).

A set with a partial order is called a partially-ordered set.

Partial Orders: Examples |

The natural numbers ordered by the standard less-
than-or-equal relation: (N, <).

The set of subsets of a given set (its powerset) ordered
by the subset relation: (P(A), Q).

The set of subsets of a given set (its powerset) ordered
by the subset relation: (P(A), D).

The natural numbers ordered by divisibility: (N, |).

ERN
373

Partial Orders: Examples Il

The vertex set V' of a directed acyclic graph G = (V, F)
ordered by reachability (reflexive, transitive closure of
edge relation).

The vertex set V of an arbitr = (V,F)
ordere TTy.

For a set X and a partially-ordered set P, the function
space ' : X — P, where f < g if and only if f(x) <
g(x) for all x in X

What about@

tates

4y e Ve i <y

Complete Lattices

A partially-ordered set (L, <) is a complete lattice if every
subset A of L has both a least upper bound (denoted | | A)
and a greatest lower bound (denoted []A). VA

/\
What is an upper bound of a set A? A

An element x is an upper bound of a set A if x if for every
element a of A, we have a < x.

What is the least upper bound (also: join, supremum) of a set A?

—

x is the least upper bound of A, denoted | | A, if
1. x is an upper bound of A,

2. for every upper bound y of A, we have x < .

Least Upper Bounds: Examples |

Partially-ordered set (D, <) ACD L|A|[]A
N, < {1,2,3} 7 7
(R, <) {xeR|x <1} T AT
R, < {zeR |z <1} [Sa el
(Q, <) (reQ|a?<2) W7 | 2
(N, <) {r e N|x isodd} | 7 ?

Which of these are complete lattices?

———

Least Upper Bounds: Examples Il

Partially-ordered set (D, <) ACD LA |[]A
PN,0) ~ [(L2L@As] 7 |
(P(N).D) o | {L2h 24| 7 | 7

(N, |) {3,4,5} %00 7
(A—=N,<) {f,g9,h} [

\

Which of these are complete lattices?

Properties of Complete Lattices

Every complete lattice (D, <) has
e a least element (bottom element): L =| |0, and

e a greatest element (top element): T =| | D.

Generic Lattice Constructions:
Power-set Lattice

For any Se@ts power set (P(S),C) with set inclusion is

a lattice:

“oim”: | |]A = JA

“meet”: [|A = NA
“top”> T = S
“bottom”: L =

Graphical representation (Hasse diagram):

Generic Lattice Constructions:
Total Function Space

For any set S and lattice (L, <), the total function space
(S — L, <) is a lattice, with f < g:=Vse S: f(x) < g(x):

Gomn: | |A = As.|]scq f(5)

‘meet” [1A = As.[];cy [(5)
“top”: T = As. T
“bottom”™: L = As.Lr

What about Reach ;

Generic Lattice Constructions: Flat Lattice

For any set S the flat lattice (SU{L, T}, <) is a lattice, with
a<b:a=bVa=1LVb=T.

Graphical representation (Hasse diagram) with S =17Z:

T

Fixed Points

A fixed point of a function f : D — D is an element x € D
with z = f(x).
Example:
f:PHL,2,3,4,5}) — P({1,2,3,4,5})
F(X) = {1,2,3} U X

Has multiple fixed points: But a unique least fixed point.
{1,2,3} {1,2,3}
{1,2,3,4}
{1,2,3,4,5}

The least fixed point [, denoted Ifp f, of a function f : D — D
over a lattice (D, <), is a fixed point of f, such that for every
fixed point x of f: [< .

Knaster-Tarski Fixpoint Theorem

THEOREM 1 (KNASTER-TARSKI, 1955).
Assume (D, <) is a complete lattice. Then every monotonic
function f : D — D has a least fixed point dg € D.

Raises more questions:

o What is a complete lattice? v/
o What is a monotonic function? v

o What is a fixed point? v

Tx)=5406)) el

Back to the Reachability Semantics

Can be captured as the least fixed point of:

Reach(start) = States

Yo' € V' \ {start} : Reach(v') = U [labeling(v,v")](Reach(v))
veV,(v,vw)EFE
@ Reach(1) = [x = 0] (Reach(start)) U [x = x + 1] (Reach(2))
v Reach(2) = [Pos(z < 100)](Reach(1))
Reach(3) = [Neg(x < 100)](Reach(1))

@ Monotone?

a Reach(1) = {0} U{v+1|v € Reach(2)}
Reach(2) = Reach(1)N{...,98,99}
Reach(3) = Reach(1) N {100,101,...}

How to Compute the Least Fixed Point

Kleene lteration:

<fL) <AL SFL) <

Why is this increasing?
Will this reach the fixed point? @
It will here: _, k=0
@ But in general? ; Neg(x<100)|—>®

Xx=0

G Neg(true)] a Nol a
——
Lattice has infinite ascending chains.

Ascending Chain Condition

A partially-ordered set S satisfies the ascending chain condi-
tion if every strictly ascending sequence of elements is finite.

= Length of longest ascending chain determines worst-case complexity
of Kleene lteration.

Power set lattice

Flat lattice |
a,b,c
/ / \ \

) (s A
(S 1+ . S L

i () / —) How about total function space lattice?

Recap: Abstract Interpretation

o Semantics-based approach to program analysis

o Framework to develop provably correct and terminating
analyses

Ingredients:
o Concrete semantics: Formalizes meaning of a program o/
o Abstract semantics

o Both semantics defined as fixpoints of monotone (/)
functions over some domain

o Relation between the two semantics establishing
correctness

Abstract Semantics

Similar to concrete semantics:

o A complete lattice (L#, <) as the domain for
abstract elements

o A monotone function I@corresponding to the
concrete function F

o Then the abstract semantics is the least fixed
point of F#, Ifp F*

If F* “correctly approximates” F,
then Ifp F#“correctly approximates” Ifp F.

An Example Abstract Domain
for Values of Variables

PAR(S sY &z V™ Conen 5
A (Z1,<) (P(2

/\

{2 1}{10} {0,1} {12} {23}

1 \/“f

How to relate the two?
=» Concretization function, specifying “‘meaning” of abstract values.

v:7, = P(Z)

= Abstraction function: determines best representation concrete values.

a:PZ) =7,

Relation between Abstract and Concrete

y(T) =4 T . |A| > 2
v(L) =0 a(A)=qx A= {z}
fy(x — {ZC} 1 A= @

Are these functions monotone?
Why should they be?

What is the meaning of the partial order in the ab WE
What if we first abstract and then concretize? K‘/"Cﬂly 2/\/
= /

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

i
Denotes abstract /* | a O J_

version of operator

N
b
0
1

How to Compute in the Abstract Domain?
Formally

Local Correctness Condition:
F#

Abstract Domain >

/y
A CV|>

Concrete Domain Q F =©

Correct by construction
(if concretization and abstraction have certain properties):

[
#
Abstract Domain F > /\
(8%
Concrete Domain

From Local to Global Correctness

#
Abstract Domain F > —F——> aE L»
o)
A
! (O—0 O
v VI V/ VI

Concrete Domain Q F »QL; @. _F,

Fixpoint Transfer Theorem

CAIMPLEYY
Let (L,<) and (L¥,<") be two lattices, v : L™ — L a

monotone function, and F : . — L and F" == two
monotone functions, with ' L#\) L#

VI € L7y (F7(17)) > F(r(I7)).

" Wv(lfp F#)-j

A/ AR LR

