
Static Program Analysis
Foundations of Abstract Interpretation

Sebastian Hack, Christian Hammer, Jan Reineke

Advanced Lecture, Winter 2014/15

Recap: Abstract Interpretation

 Semantics-based approach to program analysis

 Framework to develop provably correct and terminating

analyses

Ingredients:

 Concrete semantics: Formalizes meaning of a program

 Abstract semantics

 Both semantics defined as fixpoints of monotone

functions over some domain

 Relation between the two semantics establishing

correctness

✓

✓

(✓)

(✓)

Abstract Semantics

Similar to concrete semantics:

 A complete lattice (L#, ≤) as the domain for

abstract elements

 A monotone function F# corresponding to the

concrete function F

 Then the abstract semantics is the least fixed

point of F#, lfp F#

If F# “correctly approximates” F,

 then lfp F# “correctly approximates” lfp F.

Fixpoint Transfer Theorem

Local Correctness

Global Correctness

An Example Abstract Domain

for Values of Variables

How to relate the two?

  Concretization function, specifying “meaning” of abstract values.

  Abstraction function: determines best representation concrete values.

Relation between the Abstract and

Concrete Domains

1. Are these functions monotone?

2. Should they be?

3. What is the meaning of the partial order in the

abstract domain?

4. What if we first abstract and the concretize?

How to Compute in the Abstract Domain

Example: Multiplication on Flat Lattice

0 a

0

b

*

Denotes abstract

version of operator

How to Compute in the Abstract Domain:

Correctness Conditions

Correctness Condition:

Correct by construction

(if concretization and abstraction have certain properties):

How to Compute in the Abstract Domain

Example: Multiplication on Flat Lattice

*

 a*b a b

*

How to Compute in the Abstract Domain

Example: Multiplication on Flat Lattice

0 *

*

0

How to Compute in the Abstract Domain:

Correct by Construction

Correct by construction

(if concretization and abstraction have certain properties):

“Certain properties”: Notion of Galois connection:

Galois connections

Notion of Galois connections:

Graphically:

Why monotone?

For soundness.

For precision.

Galois connections: Example

with:

Galois connections: Properties

Graphically:

Properties:

1) Can be used to systematically construct correct (and in

fact the most precise) abstract operations:

2) a) Abstraction function induces concretization function

 b) Concretization function induces abstraction function

How?

Why?

How do abstraction and concretization

induce each other?

Why is a correct abstract

operation?

Why is the best correct

abstract transformer?

Could there not be multiple incomparable

transformers?

Think of an abstraction that does not admit

a Galois connection!

Semantic Reduction and Galois Insertions

 “Improves” abstract value without affecting meaning.

 A Galois Connection is a Galois Insertion if .

 Where might this occur?

Semantic Reduction

Abstracting Sets of Concrete States

Recap: Concrete States

Concrete states are not just sets of values...

Concrete states consist of variables and memory:

Values of Variables

Contents of Memory

Abstracting Sets of Concrete States

Recap: Concrete States

Reachability semantics is defined on sets of states:

Relation between

Concrete Domain and Abstract Domain

Concrete domain! Abstract domain?

Relation between the two?

  For ease of understanding,

 introduce Intermediate domain:

Relation between

Concrete Domain and Intermediate Domain

Concrete domain: Intermediate domain:

Abstraction:

Concretization:

Relation between

Intermediate Domain and Abstract Domain

Intermediate domain: Abstract domain:

Abstraction:

Concretization:
Abstraction and

Concretization

functions from

before!

Could plug in other

abstractions for

sets of values…

Relation between

Concrete Domain and Abstract Domain

Concrete domain: Abstract domain:

Abstraction:

Concretization:

Galois connections

can be composed to

obtain new Galois

connections.

Meaning of Statements in the

Abstract Domain

Can this be

done better?

Again:

For Correctness:

For the best

possible precision:

Meaning of Expressions

Evaluation of expressions is as expected:

As we have

seen earlier!

Putting it all together:

The Abstract Reachability Semantics

Abstract Reachability Semantics captured as least fixed point of:

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

Example: Kleene Iteration to Compute

Abstract Reachability Semantics

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

Example: Kleene Iteration to Compute

Abstract Reachability Semantics

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

Example II: Kleene Iteration to Compute

Abstract Reachability Semantics

y = 0;

x = 1;

z = 3;

while (x > 0) {

 if (x == 1) {

 y = 7;

 }

 else {

 y = z+4;

 }

 x = 3;

 print y;

}

start

1

x = 1
y = 0
z = 3

Pos(x > 0)

2

7Neg(x > 0)

Pos(x == 1)

3

Neg(x == 1)

4

y = 7

5

y = z+4

x = 3

6

print y

Next: Other Numerical Abstractions

 Signs

 Parity

 Intervals

 Octagons

 Congruence

