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Recap: Abstract Interpretation 

 Semantics-based approach to program analysis 

 Framework to develop provably correct and terminating 

analyses  
 

Ingredients: 

 Concrete semantics: Formalizes meaning of a program 

 Abstract semantics 

 Both semantics defined as fixpoints of monotone 

functions over some domain 

 Relation between the two semantics establishing 

correctness 
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Abstract Semantics 

Similar to concrete semantics: 

 A complete lattice (L#, ≤) as the domain for 

abstract elements 

 A monotone function F# corresponding to the 

concrete function F 

 Then the abstract semantics is the least fixed 

point of F#, lfp F# 

 

If F# “correctly approximates” F,  

 then lfp F# “correctly approximates” lfp F. 



Fixpoint Transfer Theorem 

Local Correctness 

Global Correctness 



An Example Abstract Domain  

for Values of Variables 

How to relate the two? 

  Concretization function, specifying “meaning” of abstract values. 

 

 

 

  Abstraction function: determines best representation concrete values. 

 



Relation between the Abstract and 

Concrete Domains 

1. Are these functions monotone? 

2. Should they be? 

3. What is the meaning of the partial order in the 

abstract domain? 

4. What if we first abstract and the concretize? 



How to Compute in the Abstract Domain 

Example: Multiplication on Flat Lattice 

0 a 

0 

b 

* 
# 

Denotes abstract 

version of operator 



How to Compute in the Abstract Domain: 

Correctness Conditions 

Correctness Condition: 

Correct by construction 

(if concretization and abstraction have certain properties): 



How to Compute in the Abstract Domain 

Example: Multiplication on Flat Lattice 

* 
# 

 a*b a b 

* 



How to Compute in the Abstract Domain 

Example: Multiplication on Flat Lattice 

0 * 
# 

* 

0 



How to Compute in the Abstract Domain: 

Correct by Construction 

Correct by construction 

(if concretization and abstraction have certain properties): 

 

 

 

 

 

 

 
 

“Certain properties”: Notion of Galois connection: 



Galois connections 

Notion of Galois connections: 

Graphically: 

Why monotone? 

For soundness. 

For precision. 



Galois connections: Example 

with: 



Galois connections: Properties 

Graphically: 

Properties: 

1) Can be used to systematically construct correct (and in 

fact the most precise) abstract operations:  

2) a) Abstraction function induces concretization function 

     b) Concretization function induces abstraction function 

 

How? 

Why? 



How do abstraction and concretization 

induce each other? 

 



Why is                     a correct abstract 

operation? 



Why is                     the best correct 

abstract transformer? 

Could there not be multiple incomparable 

transformers? 



Think of an abstraction that does not admit 

a Galois connection! 



Semantic Reduction and Galois Insertions 

 “Improves” abstract value without affecting meaning. 

 A Galois Connection is a Galois Insertion if                   . 

 Where might this occur? 

Semantic Reduction 



Abstracting Sets of Concrete States 

Recap: Concrete States 

Concrete states are not just sets of values... 

Concrete states consist of variables and memory: 

Values of Variables 

Contents of Memory 



Abstracting Sets of Concrete States 

Recap: Concrete States 

Reachability semantics is defined on sets of states: 

 



Relation between  

Concrete Domain and Abstract Domain 

Concrete domain! Abstract domain? 

Relation between the two? 

   For ease of understanding,  

      introduce Intermediate domain: 



Relation between  

Concrete Domain and Intermediate Domain 

Concrete domain: Intermediate domain: 

Abstraction: 

 

 

 

Concretization: 



Relation between  

Intermediate Domain and Abstract Domain 

Intermediate domain: Abstract domain: 

Abstraction: 

 

 

 

Concretization: 
Abstraction and 

Concretization 

functions from 

before! 

Could plug in other 

abstractions for 

sets of values… 



Relation between  

Concrete Domain and Abstract Domain 

Concrete domain: Abstract domain: 

Abstraction: 

 

 

 

Concretization: 

Galois connections 

can be composed to 

obtain new Galois 

connections. 



Meaning of Statements in the  

Abstract Domain 

Can this be 

done better? 

Again: 

 

For Correctness:  

 

 

For the best 

possible precision:  



Meaning of Expressions 

Evaluation of expressions is as expected: 

As we have 

seen earlier! 



Putting it all together: 

The Abstract Reachability Semantics 

Abstract Reachability Semantics captured as least fixed point of: 
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Example: Kleene Iteration to Compute 

Abstract Reachability Semantics 
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Example: Kleene Iteration to Compute 

Abstract Reachability Semantics 

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1
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Example II: Kleene Iteration to Compute 

Abstract Reachability Semantics 

y = 0;

x = 1;

z = 3;

while (x > 0) {

   if (x == 1) {

      y = 7;

   }

   else {

      y = z+4;

   }

   x = 3;

   print y;

}

start

1

x = 1
y = 0
z = 3

Pos(x > 0)

2

7Neg(x > 0)

Pos(x == 1)

3

Neg(x == 1)

4

y = 7

5

y = z+4

x = 3

6

print y



Next: Other Numerical Abstractions 

 Signs 

 Parity  

 Intervals 

 Octagons 

 Congruence 


