Static Program Analysis Foundations of Abstract Interpretation

Sebastian Hack, Christian Hammer, Jan Reineke

Advanced Lecture, Winter 2014/15

Overview: Numerical Abstractions


```
f:::;h19; 77i;:::;
h20; 03i;:::g
```

Overview: Numerical Abstractions Signs (Cousot & Cousot, 1979)

$$\begin{cases} x - 0 \\ y - 0 \end{cases}$$

Overview: Numerical Abstractions Intervals (Cousot & Cousot, 1976)

x 2 [19; 77]
y 2 [20; 03]

Overview: Numerical Abstractions Octagons (Mine, 2001)

Overview: Numerical Abstractions Polyhedra (Cousot & Halbwachs, 1978)

$$\begin{cases} 19x + 77y & 2004 \\ 20x + 03y - 0 \end{cases}$$

→ Very Expensive...

Overview: Numerical Abstractions Simple and Linear Congruences (Granger, 1989+1991)

Numerical Abstractions

Which abstraction is the most precise?

Depends on questions you want to answer!

Numerical Abstractions

Which abstraction is the most precise?

Depends on questions you want to answer!

Partial Order of Abstractions

Partial Order of Abstractions

Characteristics of Non-relational Domains

- Non-relational/independent attribute abstraction:
 - Abstract each variable separately

$$(\mathcal{P}(\mathbb{Z}),\subseteq) \stackrel{\gamma}{\longleftarrow} (\text{Numerical},\sqsubseteq)$$

- Maintains no relations between variable values
- Can be lifted to an abstraction of valuations of multiple variables in the expected way:

$$(\mathcal{P}(\mathit{Vars} \to \mathbb{Z}), \subseteq) \xrightarrow{\gamma_1} (\mathit{Vars} \to \mathcal{P}(\mathbb{Z}), \leq) \xrightarrow{\gamma_2} (\mathit{Vars} \to \mathit{Numerical}, \sqsubseteq)$$

$$\alpha_2(f) := \lambda x \in \mathit{Vars}.\alpha(f(x)) \qquad \gamma_2(f^\#) := \lambda x \in \mathit{Vars}.\gamma(f^\#(x))$$

• • The Interval Domain

Abstracts sets of values by enclosing interval

 $\begin{aligned} &\text{Interval} = \{[l,u] \mid l \leq u, l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{\infty\}\} \cup \{\bot\} \\ &\text{where} \leq \text{is appropriately extended from } \mathbb{Z} \times \mathbb{Z} \text{ to } (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{\infty\}) \end{aligned}$

Intervals are ordered by inclusion:

$$\bot \sqsubseteq x \quad \forall x \in \text{Interval}$$

$$[l, u] \sqsubseteq [l', u'] \text{ if } l' \leq l \land u \leq u'$$

 $(Interval, \sqsubseteq)$ forms a complete lattice.

Concretization and Abstraction of Intervals

Concretization:

$$\gamma(\bot) = \emptyset$$

$$\gamma([l, u]) = \{n \in \mathbb{Z} \mid l \le n \le u\}$$

o Abstraction:

$$\alpha(\emptyset) = \bot$$

$$\alpha(S) = [\inf_{\mathbf{m}} S, \sup_{\mathbf{m}} S]$$

They form a Galois connection.

• • Interval Arithmetic

Calculating with Intervals:

```
 [a,b] + [c,d] = [a+c,b+d] 
 [a,b] - [c,d] = [\underline{a-d},b-c] 
 [a,b] * [c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd) 
 [a,b] / [c,d] = [\underline{a,b}] * [1/d,1/c], 0 \not\in [c,d] 
 \checkmark / \gamma = \chi \cdot \frac{\gamma}{\gamma}
```

Example: Interval Analysis

Intervals, Hasse diagram

• • Example: Interval Analysis

Solution: Widening "Enforce Ascending Chain Condition"

- Widening enforces the ascending chain condition during analysis.
- Accelerates termination by moving up the lattice more quickly.
- May yield imprecise results...

Widening: Formal Requirement

A widening ∇ is an operator ∇ : D x D \rightarrow D such that

- 1. Safety: $x \sqsubseteq (x \nabla y)$ and $y \sqsubseteq (x \nabla y)$
- Termination:

forall ascending chains $x_0 \sqsubseteq x_1 \sqsubseteq ...$ the chain

$$y_0 = x_0$$

 $y_{i+1} = y_i \nabla x_{i+1}$

is finite.

$$x_0, x_0 \nabla x_1, (x_0 \nabla x_1) \nabla x_2, \dots$$

Widening Operator for Intervals

Simplest solution:

Example:

$$[3,5]\nabla[2,5] = (-\infty,5]$$

$$[3,5]\nabla[4,5] = [3,5]$$

$$[3,5]\nabla[4,6] = [3,\infty]$$

$$[3,5]\nabla[2(6)] = [-\infty,\infty)$$

Example Revisited: Interval Analysis with Simple Widening

Standard Kleene Iteration:

$$\perp \leq F(\perp) \leq F^2(\perp) \leq F^3(\perp) \leq \dots$$

Kleene Iteration with Widening: $F_{\nabla}(x) := x \nabla F(x)$ $\bot \leq F_{\nabla}(\bot) \leq F_{\nabla}^2(\bot) \leq F_{\nabla}^3(\bot) \leq \dots$

Do we need to apply widening at all program points?

→ Quick termination but imprecise result!

More Sophisticated Widening for Intervals

Define set of jump points (barriers) based on constants appearing in program, e.g.:

$$\mathcal{J} = \{-\infty, 0, 1, 1000, \infty\}$$

Intuition: "Don't jump to —infty, +infty immediately but only to next jump point."

$$[l, u]\nabla[l', u'] = \begin{bmatrix} \begin{cases} l & : l' \ge l \\ \max\{x \in \mathcal{J} \mid x \le l'\} & : l' < l \end{cases},$$
$$\begin{cases} u & : u' \le u \\ \min\{x \in \mathcal{J} \mid x \ge u'\} & : u' > u \end{bmatrix}$$

Example Revisited: Interval Analysis with Sophisticated Widening

→ More precise, potentially terminates more slowly.

Another Example: Interval Analysis with Sophisticated Widening

Narrowing: Recovering Precision

 Widening may yield imprecise results by overshooting the least fixed point.

 Narrowing is used to approach the least fixed point from above.

Possible problem: infinite descending chains is it really a problem?

Narrowing: Recovering Precision

Widening terminates at a point $x \supseteq lfp F$.

We can iterate:

$$x_0 = x$$

 $x_{i+1} = F(x_i) \left(\prod x_i \right) \longrightarrow \mathcal{T}(x_i)$

Safety:

By monotonicity we know $F(x) \supseteq F(Ifp F) = Ifp F$. By induction we can easily show that $x_i \supseteq Ifp F$ for all i.

Termination:

Depends on existence of infinite descending chains.

Narrowing: Formal Requirement

A narrowing Δ is an operator Δ : D x D \rightarrow D such that

- 1. Safety: $I \sqsubseteq x$ and $I \sqsubseteq y \rightarrow I \sqsubseteq (x \triangle y) \sqsubseteq x$
- 2. Termination:

for all descending chains $x_0 \supseteq x_1 \supseteq ...$ the chain $y_0 = x_0$ $y_{i+1} = y_i \triangle x_{i+1}$ is finite.

Is ☐ ("meet") a narrowing operator on intervals?

Narrowing Operator for Intervals

Simplest solution:

$$x\Delta \perp = \perp$$

$$[l, u]\Delta[l', u'] = \begin{bmatrix} \begin{cases} l' & : l = -\infty \\ l & : else \end{cases}, \begin{cases} u' & : u = \infty \\ u & : else \end{bmatrix}$$

Example:

$$[2,5]\Delta[4,5] = [2,5]$$

$$[-\infty,5]\Delta[4,5] = [4,5]$$

$$[-\infty,\infty]\Delta[4,6] = [4,6]$$

$$[2,\infty]\Delta[3,5] = [2,5]$$

Another Example Revisited: Interval Analysis with Widening and Narrowing

→ Precisely the least fixed point!

Some Applications of Numerical Domains

Immediate applications:

 To rule out runtime errors, such as division by zero, buffer overflows, exceeding upper or lower bounds of data types

Within other analyses:

- Cache Analysis
- Loop Bound Analysis

Reduction: Loop Bound Analysis to Value Analysis

Summary

• Interval Analysis:

A non-relational value analysis

- Widenings for termination in the presence of Infinite Ascending Chains
- Narrowings to recover precision
- Basic Approach to Loop Bound Analysis based on Value Analysis

State of the Art in Loop Bound Analysis

Multiple approaches of varying sophistication

- Pattern-based approach
- Slicing + Value Analysis + Invariant Analysis
- Reduction to Value Analysis

Loop Bound Analysis: Pattern-based Approach

Identify common loop patterns; derive loop bounds for pattern once manually

for
$$(x < 6)$$
 {

No modification of x .

→ Loop bound: 6-minimal value of x

Combination of multiple analyses:

- Slicing: eliminate code that is irrelevant for loop termination
- Value analysis: determine possible values of all variables in slice
- Invariant analysis: determine variables that do not change during loop execution
- 4. Loop bound = set of possible valuations of non-invariant variables

Program slicing is the computation of the set of programs statements, the program slice, that may affect the values at some point of interest, referred to as a **slicing criterion**.

Step 1: Slicing with slicing criterion (i <= INPUT)

```
int OUTPUT = 0;
int i = 1;
while (i <= INPUT) {
    OUTPUT += 2;
    i += 2;
}</pre>
```



```
int i = 1;
while (i <= INPUT) {
    i += 2;
}</pre>
```

Step 2: Value Analysis

Observation:

If the loop terminates, the program can only be in any particular state once.

→ Determine number of states the program can be in at the loop header.

```
int i = 1;
while (i <= INPUT) {
    i += 2;
}</pre>
```

```
Value Analysis:

INPUT in [10, 20] (assumption)

i in [1, 20], i % 2 = 1

→ 11 * 10 states
```

→ Loop bound 110!

Step 3: Invariant Analysis

Observation:

Value of INPUT is not completely known, but INPUT does not change during loop.

→ Determine variables that are invariant during loop.

```
int i = 1;
while (i <= INPUT) {
    i += 2;
}</pre>
```

Value Analysis: INPUT in [10, 20] (assumption) i in [1, 20], i % 2 = 1

- → INPUT is invariant!
- → Loop bound 10!

Reduction: Loop Bound Analysis to Value Analysis

