Static Program Analysis
Foundations of Abstract Interpretation

Sebastian Hack, Christian Hammer, Jan Reineke

Advanced Lecture, Winter 2014/15

Overview: Numerical Abstractions

\J

' ' ' foo0,M9; 7750
- 20; 03i;:::g

Overview: Numerical Abstractions
Signs (Cousot & Cousot, 1979)

Overview: Numerical Abstractions
Intervals (Cousot & Cousot, 1976)

X 2 [19; 77]
{y 2 [20; 03]

Overview: Numerical Abstractions
Octagons (Mine, 2001)

8
I1» x» 9

X+y» 77
§1» y» 9
- Xy » 99

Overview: Numerical Abstractions
Polyhedra (Cousot & Halbwachs, 1978)

19x + 77y » 2004
20x + 03y — O

- Very Expensive...

Overview: Numerical Abstractions
Simple and Linear Congruences (Granger,
1989+1991)

oooooooooooooooooooo
oooooooooooooooooo

coleccectecccccccces X = 19 mod 77
y = 20 mod 99

»
..................

ooooooooooo
ooooooooo

........... 1X+9y=7m0d8
... 2x " 1y =9mod9

>
.........

Numerical Abstractions

Which abstraction is the most precise?
Depends on questions you want to answer'!

Numerical Abstractions

Which abstraction is the most precise?
Depends on questions you want to answer'!

Partial Order of Abstractions

Polyhedra
Al
Octagons Linear Congruences
Intervals Simple Congruences

N |

Constants Signs Parity

Partial Order of Abstractions

Relational domains
Polyhedra
Octagons Linear Congruences
|
]
I
K Simple Congruences
Constants Signs Parity
Non-relational domains

Characteristics of Non-relational Domains

o Non-relational/independent attribute
abstraction:

Abstract each variable separately

(P(Z), C) == (NUMERICAL, C)

«

Maintains no relations between variable values

o Can be lifted to an abstraction of valuations of
multiple variables in the expected way:

(P(Vars — 7Z.), Q) <Z_—11> (Vars —>, <) <Z_—z> (Vars — NUMERICAL, C)

az(f) := Az € Vars.a(f(x)) o (f7) := Az € Varsy(f7 (x))
y > & y-o L

The Interval Domain

Abstracts sets of values by enclosing interval
INTERVAL = {[l,u] | | < u,l € ZU{—00},u € ZU{oco}}U{ L}
where < is appropriately extended from Z x Z to (Z U {—oc}) x (Z U {o0})

Intervals are ordered by inclusion:
1 Cx Vz € INTERVAL

Lu] T, u] ifl! <lAu<ad

(INTERVAL, C) forms a complete lattice.

Concretization and Abstraction of Intervals

o Concretization:
(L) =10
Y(lLu]) ={ne€Z|l<n<u}

o Abstraction:

a(f) = L
a(S) = [inf S, sup S]
g

They form a Galois connection.

Interval Arithmetic

Calculating with Intervals:

a,b] + [¢,d = [a+c¢b+d]
ab — [ed = la—db—d
a,b] * |c,d] = |min(ac,ad,bc,bd), max(ac,ad,bc, bd]
a,b] / le,d] = Ja,b]x[1/d,1/c],0 ¢ [c,d]
T
/9 = x %

X a@ x 2 1[0,2]

y 2[3.,7]

y 2[3,9]

x 21[0,2]
y 2[3,9]

x =2 [1,3]
y 2[3,5]

X 2 [1,3]
y =2 [2,6]

x 21[0,1]
y 2[3,3]

x 21[0,1]
y 2[3,3]

x 21[1,2]
y 2 [3,3]

x > [1,2]
y 2[2,4]

x = [0,0]

y >ser [

x = [0,0]

y 200 |

X 2 [1,1]

y >ep~)

x > [1,1]
y 2[2,2]

1 INeg(x < 3) 5

Imprecise
due to non-
relational
analysis

Would Octagons
determine that y must be
7 at program point 5?

Intervals, Hasse diagram

Ascending chain condition [-infty, inftyl
IS not satisfied! e -
- Kleene iteration is not e
guaranteed to terminate! [-infty, 1]
[-infty,0]
[-infty, -1] [_1 1]

~ o PR ==

......................... e [2-1] [F1,0] [0,2] [1,2] 7 eeeereeveseeeesnens

NN

........................... [-2,-2] [1,-1] [0,0] [L1] [2,2] coeeeeeeereereseenenns

\\//

|
1

T — |

x +— |0, 0]
x +— [0, 1] (/Q:\

1000 iterations later — x +> [0, 1000]

Example: Interval Analysis

Neg(x < 1000)

Pos(x <1600) =31

vi—~

2

Solution: Widening
“Enforce Ascending Chain Condition”

\ {x|x ZIfpF}

safe
but
possibly imprecise

o Widening enforces the
ascending chain
condition during analysis.

o Accelerates termination
by moving up the lattice

more quickly.
o May yield imprecise
results... "/
’ I(mau)v T(1v)
!

Widening: Formal Requirement

A widening V is an operator V: D x D — D such that
1. Safety: xE(xVy)andyE (xVy)
2. Termination:

forall ascending chains x, E x; E ... the chain

Yo = X0
Yier =VYiV X
IS finite.

P

X

5)va)(,,)(Xovk“\)vvl) <

Widening Operator for Intervals

Simplest solution:

Example:
.37 5
3,5
3,5
3, 5]

<1 444

|V — 4% — 1

[LulVI,u'] = {%l—oo

2,5
4,5,
4,6

2(6)

(Cood
3,5

3, 0]

—00,(00)

>
<l

|

u

0.0

Example Revisited:

Interval Analysis with Simple Widening

Standard Kleene Iteration:

L<F(L) <SF(L) S F(L) <

Kleene Iteration with Wldenlng Fv () :=

L <Fy(L) < Fo(l) < Fy(l) <

@

T [O, O] (/Q—Neg(x < 1000)
\

T = [O, OO] Pos(x ;1000) v

2

a@F(x)

Do we need to apply
widening at all
program points?

- Quick termination but imprecise result!

More Sophisticated Widening for Intervals

Define set of jump points (barriers) based on
constants appearing in program, e.g.:

J = {—00,0,1,1000, 00}

Intuition: “Don’t jump to —infty, +infty immediately
but only to next jump point.”

L,ulV[I,u'] = Hl : g’ > |

max{zr € J |z <l'} :I'<l’

U u <
min{r € J |x>u'} :u >u

Example Revisited:
Interval Analysis with Sophisticated Widening

x — (0,0
:] Neg(x < 1000) 4>®
x — [0, 1] \

z — [0, 1000] P°S<X;1°°°) X = x+1

2

- More precise, potentially terminates more slowly.

Another Example:
Interval Analysis with Sophisticated Widening

(start)
| ;(v 2
x +— [0, 0]

: Neg(x< 1000) | :)

] [Pos(x < 1000)
T — _0, 1000]
y — [2,2]
y — [2,1000]«<— () Would be [2, 2000] in
] least fixed point, but
Yy — |2, OO] <« 2000 does not appear
in the program...

Narrowing:
Recovering Precision {x|x Zlfp F}

N

o Widening may vyield
Imprecise results by
overshooting the least
fixed point.

o Narrowing is used to
approach the least
fixed point from above.

How can we

_ . . . safely move
Possible problem: infinite descending chains down the

: p :
Is it really a problem? lattice?

Narrowing:
Recovering Precision

Widening terminates at a point x =2 Ifp F.
We can iterate:
Xo = X

X1 = F(X) (FI xi> = 7’-/ X)

Safety:
By monotonicity we know F(x) 2 F(Ifp F) = Ifp F.
Fy Induction we can easily show that x; 2 Ifp F for all

Termination:
Depends on existence of infinite descending chains.

Narrowing: Formal Requirement

A narrowing A is an operator A : D x D — D such that
1. Safety:lcxandlcy > IC (xAy)@
2. Termination:

for all descending chains x, 2 x; = ... the chain

Yo = X0
Yier = VYiA Xy
IS finite.

Is] (‘meet”) a narrowing operator on intervals?

Narrowing Operator for Intervals

Simplest solution:
AL = L

1, u] Al u'] =

l/
[

Example:

2, 5] A4, 5]
|[—00, 5]A4, 5]
[—o00, 0|Al4, 6
2, 00]A[3, 5]

2,5
4,5
4,6
2,5

Another Example Revisited:
Interval Analysis with Widening and Narrowing

Result after Widening: @ Result after Narrowing:

z [0, 0] 2+ [1000, 1000]
s 0,1] e QREETE) "y s [3,2001]

_ [Pos(x < 1000)
z +— [0, 1000] =yl x — [0,999]

x — [1, 1000]
y—[2,2]
y +— [2,1000]<

e o) y - 2£000])

- Precisely the least fixed point!

Some Applications of Numerical Domains

Immediate applications:

o To rule out runtime errors, such as division by
zero, buffer overflows, exceeding upper or
lower bounds of data types

Within other analyses:
o Cache Analysis
o Loop Bound Analysis

Reduction:
Loop Bound Analysis to Value Analysis

e Instrument program
y=22] with counters of loop @
e NeoO <Y e iterations and other

/ '\ interesting events lefic = 0
Pos(x <y) rightc = 0

;
) > (3)— ez —(s)

Pos(a<b) Neg(a<b) Pos(a<b) Neg(a<b)
X=x+1 leftc++ rightc++
X = Xx+2 X =x+1

Summary

o Interval Analysis:
A non-relational value analysis

o Widenings for termination in the presence of
Infinite Ascending Chains

o Narrowings to recover precision

o Basic Approach to Loop Bound Analysis
based on Value Analysis

State of the Art in Loop Bound Analysis

Multiple approaches of varying sophistication
o Pattern-based approach

o Slicing + Value Analysis + Invariant Analysis
o Reduction to Value Analysis

Loop Bound Analysis:
Pattern-based Approach

ldentify common loop patterns; derive loop
bounds for pattern once manually

Initial value

’\/u of x?
for (x<B6){
. N
X++\f —> m((jjdification
} of X.

- Loop bound: 6-minimal value of x

Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Combination of multiple analyses:

1. Slicing: eliminate code that is irrelevant for
loop termination

2. Value analysis: determine possible values of
all variables in slice

3. Invariant analysis: determine variables that
do not change during loop execution

4. Loop bound = set of possible valuations of
non-invariant variables

Program slicing is the computation of the set of programs statements, the program slice,
that may affect the values at some point of interest, referred to as a slicing criterion.

Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 1: Slicing with
slicing criterion (i <= INPUT)

int OUTPUT = 0: ﬂ
Inti=1;

while (i <= INPUT) { Inti=1;
OUTPUT +=/7-%(% while (i <= INPUT) {
| += 2; | += 2;

} }

Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 2: Value Analysis
Observation:

If the loop terminates, the program can only be Iin
any particular state once.

- Determine number of states the program can
be in at the loop header.

Value Analysis:

inti=1; INPUT in [10, 20] (assumption)
while (i <= INPUT) { iin[1,20],i%2=1
| += 2;

- 11 * 10 states
} > Loop bound 110!

Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 3. Invariant Analysis

Observation:

Value of INPUT is not completely known, but
INPUT does not change during loop.

- Determine variables that are invariant during
loop.

inti=1; Value Analysis:

while (i <= INPUT) { INPUT in [10, 20] (assumption)
s iin[1,20],i%2=1
| += 2;

} - INPUT Is invariant!
- Loop bound 10!

Reduction:

<

1
N
N

Pos(x <y,

/

| \
I
=
X,

b= M[x+1]

Pos(a<b) Neg(a<b)
X= i1

Loop Bound Analysis to Value Analysis

Instrument program
with counters of loop 2
iterations and other
interesting events

loopc =0
leftc =0

rightc = 04

)

Upper bound for
loopc is loop bound!

v
o
(5

o

Requires very
powerful relational
analysis...

Pos(a<h)

7

leftc++4 rightca
X = X+2 X = X+1
L L |

