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Overview: Numerical Abstractions
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Overview: Numerical Abstractions
Signs (Cousot & Cousot, 1979)




Overview: Numerical Abstractions
Intervals (Cousot & Cousot, 1976)

X 2 [19; 77]
{y 2 [20; 03]




Overview: Numerical Abstractions
Octagons (Mine, 2001)
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I1» x» 9

X+y» 77
§1» y» 9
- Xy » 99




Overview: Numerical Abstractions
Polyhedra (Cousot & Halbwachs, 1978)

19x + 77y » 2004
20x + 03y — O

- Very Expensive...



Overview: Numerical Abstractions
Simple and Linear Congruences (Granger,
1989+1991)
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coleccectecccccccces X = 19 mod 77
y = 20 mod 99
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Numerical Abstractions

Which abstraction is the most precise?
Depends on questions you want to answer'!
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Partial Order of Abstractions
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Octagons Linear Congruences
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Partial Order of Abstractions

Relational domains
Polyhedra
Octagons Linear Congruences
|
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K Simple Congruences
Constants Signs Parity
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Characteristics of Non-relational Domains

o Non-relational/independent attribute
abstraction:

Abstract each variable separately

(P(Z), C) == (NUMERICAL, C)

«

Maintains no relations between variable values

o Can be lifted to an abstraction of valuations of
multiple variables in the expected way:

(P(Vars — 7Z.), Q) <Z_—11> (Vars —>, <) <Z_—z> (Vars — NUMERICAL, C)

az(f) := Az € Vars.a(f(x)) o (f7) := Az € Varsy(f7 (x))
y > & y-o L



The Interval Domain

Abstracts sets of values by enclosing interval
INTERVAL = {[l,u] | | < u,l € ZU{—00},u € ZU{oco}}U{ L}
where < is appropriately extended from Z x Z to (Z U {—oc}) x (Z U {o0})

Intervals are ordered by inclusion:
1 Cx Vz € INTERVAL

Lu] T, u] ifl! <lAu<ad

(INTERVAL, C) forms a complete lattice.



Concretization and Abstraction of Intervals

o Concretization:
(L) =10
Y(lLu]) ={ne€Z|l<n<u}

o Abstraction:

a(f) = L
a(S) = [inf S, sup S]
g

They form a Galois connection.



Interval Arithmetic

Calculating with Intervals:

a,b] + [¢,d = [a+c¢b+d]
ab — [ed = la—db—d
a,b] * |c,d] = |min(ac,ad,bc,bd), max(ac,ad,bc, bd]
a,b] / le,d] = Ja,b]x[1/d,1/c],0 ¢ [c,d]
T
/9 = x %



X a@ x 2 1[0,2]

y 2[3.,7]

y 2[3,9]

x 21[0,2]
y 2[3,9]

x =2 [1,3]
y 2[3,5]

X 2 [1,3]
y =2 [2,6]

x 21[0,1]
y 2[3,3]

x 21[0,1]
y 2[3,3]

x 21[1,2]
y 2 [3,3]

x > [1,2]
y 2[2,4]

x = [0,0]

y >ser [

x = [0,0]

y 200 |

X 2 [1,1]

y >ep~ )

x > [1,1]
y 2[2,2]

1 INeg(x < 3) 5

Imprecise
due to non-
relational
analysis

Would Octagons
determine that y must be
7 at program point 5?




Intervals, Hasse diagram

Ascending chain condition [-infty, inftyl
IS not satisfied! e -
- Kleene iteration is not e
guaranteed to terminate! [-infty, 1]
[-infty,0]
[-infty, -1] [_1 1]

~ o PR ==

......................... e [2-1] [F1,0] [0,2]  [1,2] 7 eeeereeveseeeesnens
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........................... [-2,-2] [1,-1] [0,0] [L1]  [2,2] coeeeeeeereereseenenns
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T — |

x +— |0, 0]
x +— [0, 1] (/Q:\

1000 iterations later — x +> [0, 1000]

Example: Interval Analysis

Neg(x < 1000)

Pos(x <1600) =31

vi—~

2




Solution: Widening
“Enforce Ascending Chain Condition”

\ {x|x ZIfpF}

safe
but
possibly imprecise

o Widening enforces the
ascending chain
condition during analysis.

o Accelerates termination
by moving up the lattice

more quickly.
o May yield imprecise
results... "/
’ I(mau)v T(1v )
!




Widening: Formal Requirement

A widening V is an operator V: D x D — D such that
1. Safety: xE(xVy)andyE (xVy)
2. Termination:

forall ascending chains x, E x; E ... the chain

Yo = X0
Yier  =VYiV X
IS finite.

P

X

5 )va)(,, )(Xovk“\)vvl ) <



Widening Operator for Intervals

Simplest solution:

Example:
.37 5
3,5
3,5
3, 5]

<1 444

|V — 4% — 1

[LulVI,u'] = {%l—oo

2,5
4,5,
4,6

2(6)

(Cood
3,5

3, 0]

—00,(00)

>
<l

|

u

0.0




Example Revisited:

Interval Analysis with Simple Widening

Standard Kleene Iteration:

L<F(L) <SF(L) S F(L) <

Kleene Iteration with Wldenlng Fv () :=

L <Fy(L) < Fo(l) < Fy(l) <

@

T [O, O] (/Q—Neg(x < 1000)
\

T = [O, OO] Pos(x ;1000) v

2

a@F(x)

Do we need to apply
widening at all
program points?

- Quick termination but imprecise result!




More Sophisticated Widening for Intervals

Define set of jump points (barriers) based on
constants appearing in program, e.g.:

J = {—00,0,1,1000, 00}

Intuition: “Don’t jump to —infty, +infty immediately
but only to next jump point.”

L,ulV[I,u'] = Hl : g’ > |

max{zr € J |z <l'} :I'<l’

U u <
min{r € J |x>u'} :u >u



Example Revisited:
Interval Analysis with Sophisticated Widening

x — (0,0
: ] Neg(x < 1000) 4>®
x — [0, 1] \

z — [0, 1000] P°S<X;1°°°) X = x+1

2

- More precise, potentially terminates more slowly.



Another Example:
Interval Analysis with Sophisticated Widening

(start)
| ;(v 2
x +— [0, 0]

: Neg(x< 1000) | : )

] [Pos(x < 1000)
T — _0, 1000]
y — [2,2]
y — [2,1000]«<— () Would be [2, 2000] in
] least fixed point, but
Yy — |2, OO] <« 2000 does not appear
in the program...




Narrowing:
Recovering Precision {x|x Zlfp F}

N

o Widening may vyield
Imprecise results by
overshooting the least
fixed point.

o Narrowing is used to
approach the least
fixed point from above.

How can we

_ . . . safely move
Possible problem: infinite descending chains down the

: p :
Is it really a problem? lattice?




Narrowing:
Recovering Precision

Widening terminates at a point x =2 Ifp F.
We can iterate:
Xo = X

X1 = F(X) (FI xi> = 7’-/ X )

Safety:
By monotonicity we know F(x) 2 F(Ifp F) = Ifp F.
Fy Induction we can easily show that x; 2 Ifp F for all

Termination:
Depends on existence of infinite descending chains.



Narrowing: Formal Requirement

A narrowing A is an operator A : D x D — D such that
1. Safety:lcxandlcy > IC (xAy)@
2. Termination:

for all descending chains x, 2 x; = ... the chain

Yo = X0
Yier = VYiA Xy
IS finite.

Is ] (‘meet”) a narrowing operator on intervals?



Narrowing Operator for Intervals

Simplest solution:
AL = L

1, u] Al u'] =

l/
[

Example:

2, 5] A4, 5]
|[—00, 5]A4, 5]
[—o00, 0|Al4, 6
2, 00]A[3, 5]

2,5
4,5
4,6
2,5




Another Example Revisited:
Interval Analysis with Widening and Narrowing

Result after Widening: @ Result after Narrowing:

z [0, 0] 2+ [1000, 1000]
s 0,1] e QREETE) "y s [3,2001]

_ [Pos(x < 1000)
z +— [0, 1000] =yl x — [0,999]

x — [1, 1000]
y—[2,2]
y +— [2,1000]<

e o) y - 2£000])

- Precisely the least fixed point!




Some Applications of Numerical Domains

Immediate applications:

o To rule out runtime errors, such as division by
zero, buffer overflows, exceeding upper or
lower bounds of data types

Within other analyses:
o Cache Analysis
o Loop Bound Analysis




Reduction:
Loop Bound Analysis to Value Analysis

e Instrument program
y=22] with counters of loop @
e NeoO <Y e iterations and other

/ '\ interesting events lefic = 0
Pos(x <y) rightc = 0

;
) > (3)— ez —(s )

Pos(a<b) Neg(a<b) Pos(a<b) Neg(a<b)
X=x+1 leftc++ rightc++
X = Xx+2 X =x+1




Summary

o Interval Analysis:
A non-relational value analysis

o Widenings for termination in the presence of
Infinite Ascending Chains

o Narrowings to recover precision

o Basic Approach to Loop Bound Analysis
based on Value Analysis



State of the Art in Loop Bound Analysis

Multiple approaches of varying sophistication
o Pattern-based approach

o Slicing + Value Analysis + Invariant Analysis
o Reduction to Value Analysis



Loop Bound Analysis:
Pattern-based Approach

ldentify common loop patterns; derive loop
bounds for pattern once manually

Initial value

’\/u of x?
for (x<B6){
. N
X++\f —> m((jjdification
} of X.

- Loop bound: 6-minimal value of x



Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Combination of multiple analyses:

1. Slicing: eliminate code that is irrelevant for
loop termination

2. Value analysis: determine possible values of
all variables in slice

3. Invariant analysis: determine variables that
do not change during loop execution

4. Loop bound = set of possible valuations of
non-invariant variables

Program slicing is the computation of the set of programs statements, the program slice,
that may affect the values at some point of interest, referred to as a slicing criterion.




Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 1: Slicing with
slicing criterion (i <= INPUT)

int OUTPUT = 0: ﬂ
Inti=1;

while (i <= INPUT) { Inti=1;
OUTPUT +=/7-%(% while (i <= INPUT) {
| += 2; | += 2;

} }




Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 2: Value Analysis
Observation:

If the loop terminates, the program can only be Iin
any particular state once.

- Determine number of states the program can
be in at the loop header.

Value Analysis:

inti=1; INPUT in [10, 20] (assumption)
while (i <= INPUT) { iin[1,20],i%2=1
| += 2;

- 11 * 10 states
} > Loop bound 110!




Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 3. Invariant Analysis

Observation:

Value of INPUT is not completely known, but
INPUT does not change during loop.

- Determine variables that are invariant during
loop.

inti=1; Value Analysis:

while (i <= INPUT) { INPUT in [10, 20] (assumption)
s iin[1,20],i%2=1
| += 2;

} - INPUT Is invariant!
- Loop bound 10!




Reduction:

<

1
N
N

Pos(x <y,

/

| \
I
=
X,

b= M[x+1]

Pos(a<b) Neg(a<b)
X= i1

Loop Bound Analysis to Value Analysis

Instrument program
with counters of loop 2
iterations and other
interesting events

loopc =0
leftc =0

rightc = 04

)

Upper bound for
loopc is loop bound!

v
o
(5

o

Requires very
powerful relational
analysis...

Pos(a<h)

7

leftc++4 rightca
X = X+2 X = X+1
L L |



