UniAna.cfg.CFGdef
Set Nested Proofs Allowed.
Require Export Coq.Logic.Decidable.
Require Export Coq.Classes.EquivDec.
Require Export Coq.Bool.Bool.
Require Export Lists.List.
Require Export Coq.Program.Equality Coq.Program.Utils.
(*Require Import finiteTypes.External.
Require Import finiteTypes.BasicDefinitions.*)
Require Export FinTypes.
Require Export Graph SimplDec.
(* Notation "p '-->*' q" := (exists π, Path p q π) (at level 55, right associativity).*)
Require Export Coq.Logic.Decidable.
Require Export Coq.Classes.EquivDec.
Require Export Coq.Bool.Bool.
Require Export Lists.List.
Require Export Coq.Program.Equality Coq.Program.Utils.
(*Require Import finiteTypes.External.
Require Import finiteTypes.BasicDefinitions.*)
Require Export FinTypes.
Require Export Graph SimplDec.
(* Notation "p '-->*' q" := (exists π, Path p q π) (at level 55, right associativity).*)
Reserved Infix "-->b" (at level 55).
Reserved Infix "-a>" (at level 55).
Reserved Infix "-a>*" (at level 55).
Definition is_true2 (A B : Type) := fun (f : A -> B -> bool) (a : A) (b : B) => is_true (f a b).
Class redCFG
(Lab : finType)
(edge : Lab -> Lab -> bool)
(root : Lab)
(a_edge : Lab -> Lab -> bool)
:=
{
edge__P := is_true2 edge;
a_edge__P := is_true2 a_edge;
back_edge := minus_edge edge__P a_edge__P
where "p --> q" := ((is_true2 edge) p q);
(* reducibility *)
loop_head_dom : forall ql qh, back_edge ql qh -> Dom edge__P root qh ql
where "p -a> q" := (a_edge p q = true);
a_edge_incl : sub_graph a_edge__P edge__P
where "p '-a>*' q" := (exists π, Path a_edge__P p q π);
a_edge_acyclic : acyclic a_edge__P;
a_reachability : forall q, (exists π, Path a_edge__P root q π);
(* useful definitions *)
loop_head h := exists p, back_edge p h;
loop_contains qh q := exists p π, back_edge p qh /\ Path edge__P q p π /\ qh ∉ tl (rev π);
exit_edge h p q := loop_contains h p /\ ~ loop_contains h q /\ p --> q;
(* the following restrictions can be easily be met by introducing new blocks *)
single_exit : forall h p q, exit_edge h p q -> forall h', exit_edge h' p q -> h = h';
no_exit_head : forall h p q, exit_edge h p q -> ~ loop_head q;
exit_pred_loop : forall h q qe e, exit_edge h qe e -> q --> e -> loop_contains h q;
no_self_loops : forall q p, edge q p = true -> q <> p;
root_no_pred : forall p, edge p root <> true
}.
Hint Resolve loop_head_dom a_edge_incl a_edge_acyclic a_reachability.
Definition CPath `{redCFG} := Path edge__P.
Definition APath `{redCFG} := Path a_edge__P.
Infix "↪" := back_edge (at level 55).
Notation "p '-->*' q" := (exists π, CPath p q π) (at level 55, right associativity).
Notation "p '-a>*' q" := (exists π, APath p q π) (at level 55).
Section cfg.
Context `{C : redCFG}.
Notation "p '-a>b' q" := (a_edge p q) (at level 55).
Notation "p '-a>' q" := (p -a>b q = true) (at level 55).
Notation "p '-->b' q" := (edge p q) (at level 55).
Notation "p '-->' q" := (p -->b q = true) (at level 55, right associativity).
Definition entry_edge (p h : Lab) := loop_head h /\ ~ loop_contains h p /\ edge p h = true.
Definition exiting (h p : Lab) : Prop :=
exists q, exit_edge h p q.
Definition exited (h q : Lab) : Prop :=
exists p, exit_edge h p q.
Global Instance Lab_dec : EqDec Lab eq.
Proof.
intros x y. destruct (decide_eq x y).
- left. rewrite e. reflexivity.
- right. eauto.
Qed.
Instance loop_head_dec p : dec (loop_head p).
eauto.
Qed.
(* This could also be proven, but it is not trivial non-classical. *)
Parameter loop_contains_dec : forall qh q, dec (loop_contains qh q).
Global Existing Instance loop_contains_dec.
Hint Resolve loop_contains_dec.
Global Instance exit_edge_dec : forall h p q, dec (exit_edge h p q).
Proof.
eauto.
Qed.
Global Instance exited_dec (h q : Lab) : dec (exited h q).
Proof.
eauto.
Qed.
Lemma back_edge_dec p q : dec (p ↪ q).
Proof.
eauto.
Qed.
Hint Resolve back_edge_dec.
Lemma reachability (q : Lab) : exists π : list Lab, Path edge__P root q π.
Proof.
specialize (a_reachability q) as Hreach. destructH. exists π. eapply subgraph_path';eauto.
Qed.
Lemma back_edge_incl (p q : Lab) (Hback : p ↪ q) : edge__P p q.
Proof.
unfold back_edge in Hback. eapply minus_subgraph. eauto.
Qed.
Lemma acyclic_path_NoDup p q π
(Hπ : Path a_edge__P p q π)
: NoDup π.
Proof.
induction Hπ.
- econstructor;eauto. econstructor.
- cbn. econstructor;auto.
intro N. specialize a_edge_acyclic as Hacy. unfold acyclic in Hacy.
eapply path_from_elem in N;eauto. destructH. apply Hacy in N0;eauto.
Qed.
Lemma edge_destruct p q
(Hedge : p --> q)
: p -a> q \/ p ↪ q.
Proof.
decide (p -a> q);[left;auto|right].
unfold back_edge. unfold minus_edge. conv_bool. split; auto.
Qed.
End cfg.
Open Scope prg.
Definition restrict_edge (A : finType) (f : A -> A -> Prop) (p : decPred A)
: let L' := finType_sub p (decide_pred p) in L' -> L' -> Prop
:= fun x y => (f (`x) (`y)).
Definition restrict_edge' (A : Type) (f : A -> A -> Prop) (p : decPred A)
:= f ∩ ((fun a _ => p a)
∩ (fun _ b => p b)).
Definition loop_contains' (L : Type) (edge a_edge : L -> L -> Prop) (qh q : L)
:= exists (p : L) π, (edge ∖ a_edge) p qh
/\ Path edge q p π
/\ qh ∉ tl (rev π).
Definition exit_edge' (L : finType) (edge a_edge : L -> L -> Prop) (h p q : L)
:= loop_contains' edge a_edge h p /\ ~ loop_contains' edge a_edge h q /\ edge p q.
Definition back_edge' (L : Type) (edge a_edge : L -> L -> Prop) (p q : L)
:= (edge ∖ a_edge) p q.
Definition loop_head' (L : Type) (edge a_edge : L -> L -> Prop) (h : L)
:= exists p, ((edge) ∖ (a_edge)) p h.