UniAna.infra.Disjoint
Require Export ListExtra.
Definition Disjoint {A : Type} (l l' : list A) : Prop :=
(forall a, a ∈ l -> a ∉ l').
Lemma disjoint_cons1 {A : Type} (a : A) l l' :
Disjoint (a :: l) l' <-> ~ In a l' /\ Disjoint l l'.
Proof.
split; revert l.
- induction l'; intros l; firstorder.
- intros l [nin disj].
+ intros b in' N.
destruct in'.
* destruct H. contradiction.
* specialize (disj _ H). contradiction.
Qed.
Lemma disjoint_cons2 {A : Type} (a : A) l l' :
Disjoint l (a :: l') <-> ~ In a l /\ Disjoint l l'.
Proof.
split; revert l.
- induction l'; intros l; firstorder.
- intros l [nin disj].
+ intros b in' N.
destruct N.
* destruct H. contradiction.
* unfold Disjoint in disj. specialize (disj _ in'). contradiction.
Qed.
Lemma disjoint_subset (A : Type) (l1 l1' l2 l2' : list A)
: l1 ⊆ l1' -> l2 ⊆ l2' -> Disjoint l1' l2' -> Disjoint l1 l2.
Proof.
intros Hsub1 Hsub2 Hdisj.
unfold Disjoint in *. firstorder.
Qed.
Lemma Disjoint_sym {A : Type} (l l' : list A)
(Hdisj : Disjoint l l')
: Disjoint l' l.
Proof.
unfold Disjoint in *.
firstorder.
Qed.
Lemma disjoint2 {A : Type} `{EqDec A} (l1 l2 : list A)
: Disjoint l1 l2 <-> forall x y, x ∈ l1 -> y ∈ l2 -> x <> y.
Proof.
split;unfold Disjoint;intros.
- intro N. subst x. firstorder.
- intros;intro N;eapply H0;eauto.
Qed.
Lemma disjoint1 (A : Type) (l1 l2 : list A)
: Disjoint l1 l2 <-> Disjoint l1 l2 /\ Disjoint l2 l1.
Proof.
split;intros;auto.
- split;auto using Disjoint_sym.
- destructH. auto.
Qed.
Lemma Disjoint_map_inj (A B : Type) (f : A -> B) (Hinj : injective f) (l l' : list A)
: Disjoint (map f l) (map f l') -> Disjoint l l'.
Proof.
intros.
unfold Disjoint in *.
intros a Hel Hel'. eapply H;eauto.
1,2: eapply in_map;eauto.
Qed.
Lemma disjoint_app_app (A : Type) (l1 l2 l3 l4 : list A)
: Disjoint l1 l3
-> Disjoint l1 l4
-> Disjoint l2 l3
-> Disjoint l2 l4
-> Disjoint (l1 ++ l2) (l3 ++ l4).
Proof.
revert l2 l3 l4.
induction l1;intros;cbn.
- induction l3;intros;cbn.
+ eauto.
+ eapply disjoint_cons2.
eapply disjoint_cons2 in H1. destruct H1.
split;eauto.
eapply IHl3;eauto.
firstorder.
- eapply disjoint_cons1. eapply disjoint_cons1 in H. eapply disjoint_cons1 in H0.
do 2 destructH.
split.
+ intro N. eapply in_app_or in N. destruct N;contradiction.
+ eapply IHl1;eauto.
Qed.
Lemma Disjoint_nil1 (A : Type) (l : list A)
: Disjoint [] l.
Proof.
unfold Disjoint. intros. contradiction.
Qed.
Lemma Disjoint_nil2 (A : Type) (l : list A)
: Disjoint l [].
Proof.
eapply Disjoint_sym. eapply Disjoint_nil1.
Qed.
Definition Disjoint {A : Type} (l l' : list A) : Prop :=
(forall a, a ∈ l -> a ∉ l').
Lemma disjoint_cons1 {A : Type} (a : A) l l' :
Disjoint (a :: l) l' <-> ~ In a l' /\ Disjoint l l'.
Proof.
split; revert l.
- induction l'; intros l; firstorder.
- intros l [nin disj].
+ intros b in' N.
destruct in'.
* destruct H. contradiction.
* specialize (disj _ H). contradiction.
Qed.
Lemma disjoint_cons2 {A : Type} (a : A) l l' :
Disjoint l (a :: l') <-> ~ In a l /\ Disjoint l l'.
Proof.
split; revert l.
- induction l'; intros l; firstorder.
- intros l [nin disj].
+ intros b in' N.
destruct N.
* destruct H. contradiction.
* unfold Disjoint in disj. specialize (disj _ in'). contradiction.
Qed.
Lemma disjoint_subset (A : Type) (l1 l1' l2 l2' : list A)
: l1 ⊆ l1' -> l2 ⊆ l2' -> Disjoint l1' l2' -> Disjoint l1 l2.
Proof.
intros Hsub1 Hsub2 Hdisj.
unfold Disjoint in *. firstorder.
Qed.
Lemma Disjoint_sym {A : Type} (l l' : list A)
(Hdisj : Disjoint l l')
: Disjoint l' l.
Proof.
unfold Disjoint in *.
firstorder.
Qed.
Lemma disjoint2 {A : Type} `{EqDec A} (l1 l2 : list A)
: Disjoint l1 l2 <-> forall x y, x ∈ l1 -> y ∈ l2 -> x <> y.
Proof.
split;unfold Disjoint;intros.
- intro N. subst x. firstorder.
- intros;intro N;eapply H0;eauto.
Qed.
Lemma disjoint1 (A : Type) (l1 l2 : list A)
: Disjoint l1 l2 <-> Disjoint l1 l2 /\ Disjoint l2 l1.
Proof.
split;intros;auto.
- split;auto using Disjoint_sym.
- destructH. auto.
Qed.
Lemma Disjoint_map_inj (A B : Type) (f : A -> B) (Hinj : injective f) (l l' : list A)
: Disjoint (map f l) (map f l') -> Disjoint l l'.
Proof.
intros.
unfold Disjoint in *.
intros a Hel Hel'. eapply H;eauto.
1,2: eapply in_map;eauto.
Qed.
Lemma disjoint_app_app (A : Type) (l1 l2 l3 l4 : list A)
: Disjoint l1 l3
-> Disjoint l1 l4
-> Disjoint l2 l3
-> Disjoint l2 l4
-> Disjoint (l1 ++ l2) (l3 ++ l4).
Proof.
revert l2 l3 l4.
induction l1;intros;cbn.
- induction l3;intros;cbn.
+ eauto.
+ eapply disjoint_cons2.
eapply disjoint_cons2 in H1. destruct H1.
split;eauto.
eapply IHl3;eauto.
firstorder.
- eapply disjoint_cons1. eapply disjoint_cons1 in H. eapply disjoint_cons1 in H0.
do 2 destructH.
split.
+ intro N. eapply in_app_or in N. destruct N;contradiction.
+ eapply IHl1;eauto.
Qed.
Lemma Disjoint_nil1 (A : Type) (l : list A)
: Disjoint [] l.
Proof.
unfold Disjoint. intros. contradiction.
Qed.
Lemma Disjoint_nil2 (A : Type) (l : list A)
: Disjoint l [].
Proof.
eapply Disjoint_sym. eapply Disjoint_nil1.
Qed.