UniAna.cfg.PPexhead
Lemma p_p_ex_head' (p q : Lab) π ϕ
(Hpath : CPath p q π)
(Hdeq : forall x, x ∈ π -> deq_loop p x)
(Hacy : APath q p ϕ)
(Hlen : | π | >= 2)
: exists h, h ∈ π /\ forall x, x ∈ π -> loop_contains h x.
Proof.
(* by induction on π:
* * if nil,singleton: contradiction
* * if doubleton: easy style: h=q, bc of APath p-->q must be a back_edge, thus loop_contains q p
* * else:
* * edge distinction for ? --> q:
* * if back_edge then: we have found h
* * otw. IH
*)
Admitted.
Lemma p_p_ex_head (p : Lab) π
(Hpath : CPath p p π)
(Hlen : | π | >= 2)
: exists h, h ∈ π /\ forall x, x ∈ π -> loop_contains h x.
Proof.
(* implode π wrt. p then Hdeq of p_p_ex_head' holds and the conclusion is extendable from there *)
eapply p_p_ex_head';eauto.
- admit.
- econstructor.
Admitted.
End cfg.