UniAna.tcfg.TcfgLoop

Require Export TcfgEdge.
Require Import Lia.

Section cfg.
  Context `{C : redCFG}.

  Infix "-->" := edge__P.
  Notation "pi -t> qj" := (tcfg_edge pi qj) (at level 50).

Depth of a node equals Tag length


  Lemma tag_depth' p i t
        (Hpath : TPath (root,start_tag) (p,i) t)
    : length i = depth p.
  Proof.
    revert p i Hpath.
    induction t;intros;[inversion Hpath|].
    destruct a as [q j].
    unfold TPath in Hpath. path_simpl' Hpath.
    inversion Hpath;subst t a;[subst i p|subst c]. clear H3.
    - rewrite depth_root. cbn. reflexivity.
    - destruct b. eapply tcfg_edge_destruct' in H3.
      destruct H3 as [[H Q]|[[H Q]|[[H Q]|[H Q]]]].
      all: rewrite H;cbn.
      3: rewrite STag_len; eapply back_edge_eq_loop in Q.
      1: destruct Q as [Q _].
      1,3: setoid_rewrite <-Q;eauto.
      + erewrite <-depth_entry;eauto.
      + eapply eq_add_S.
        erewrite <-depth_exit;eauto.
        destruct t.
        * exfalso. clear - H0 Q IHt. unfold eexit_edge in Q. destructH.
          eapply IHt in H0. cbn in H0. eapply eq_loop_exiting in Q as Q'.
          rewrite <-Q' in H0.
          unfold exit_edge in Q. destructH.
          eapply loop_contains_loop_head in Q0. eapply depth_loop_head in Q0. lia.
        * erewrite <-IHt;eauto. cbn. reflexivity.
  Qed.

relation between tag length and depth


  Lemma tag_depth p i q j t
        (Hpath : TPath (root,start_tag) (p,i) t)
        (Hin : (q,j) t)
    : length j = depth q.
  Proof.
    eapply path_to_elem in Hpath;eauto. destructH.
    eapply tag_depth';eauto.
  Qed.

  Lemma tag_eq_loop_exit p q i j j'
        (Htag : (q,j ) -t> (p,i))
        (Htag': (q,j') -t> (p,i))
        (Hneq : j <> j')
    : match (get_innermost_loop q) with
      | Some h => exit_edge h q p
      | None => False
      end.
  Proof.
    unfold tcfg_edge,eff_tag in Htag,Htag'.
    do 2 destructH.
    decide (edge__P q p);[|congruence].
    inversion Htag1. inversion Htag'1. clear Htag1 Htag'1.
    destruct (edge_Edge e);subst.
    - inversion H0. inversion H1. subst. contradiction.
    - destruct j;[congruence|]. destruct j';[congruence|].
      inversion H0. inversion H1. subst. inversion H3. subst. contradiction.
    - inversion H1. subst. inversion H0. contradiction.
    - unfold eexit_edge in e0. destructH.
      specialize (get_innermost_loop_spec q) as Himl.
      destruct (get_innermost_loop q).
      + replace e1 with h;eauto. eapply single_exit;eauto. unfold innermost_loop in Himl. destructH.
        unfold exit_edge. split_conj;eauto.
        specialize (exit_not_deq e0) as Q. contradict Q. eapply loop_contains_deq_loop in Q.
        rewrite Q. rewrite Himl1. eapply eq_loop_exiting;eauto.
      + eapply Himl. unfold exit_edge in e0. destructH. eauto.
  Qed.

  Lemma deq_loop_le p i j q t t'
        (Hdeq : deq_loop p q)
        (Hpath : TPath (root,start_tag) (p,i) t)
        (Hpath' : TPath (root,start_tag) (q,j) t')
    : |j| <= |i|.
  Proof.
    eapply tag_depth in Hpath as Hdep'. 2: eapply path_contains_front;eauto.
    eapply tag_depth in Hpath' as Hdep. 2: eapply path_contains_front;eauto.
    rewrite Hdep, Hdep'.
    eapply deq_loop_depth;auto.
  Qed.

  Lemma tcfg_edge_exit_nil p q j
        (Hedge : tcfg_edge (p,[]) (q,j))
        (Hexit : eexit_edge p q)
    : False.
  Proof.
    destruct Hedge. unfold eff_tag in H0.
    decide (edge__P p q).
    2: contradiction.
    eapply depth_exit in Hexit.
    destruct (edge_Edge e).
    - eapply depth_basic in b. lia.
    - congruence.
    - eapply depth_entry in e0. lia.
    - congruence.
  Qed.

  Lemma tcfg_edge_back_nil p q j
        (Hedge : tcfg_edge (p,[]) (q,j))
        (Hback : back_edge p q)
    : False.
  Proof.
    destruct Hedge. unfold eff_tag in H0.
    decide (edge__P p q).
    2: contradiction.
    eapply depth_back in Hback as Hdep.
    destruct (edge_Edge e).
    - destruct b. destruct Hback. contradiction.
    - congruence.
    - eapply depth_entry in e0. lia.
    - congruence.
  Qed.

  Lemma tcfg_edge_depth_iff p q i j
        (Hedge : tcfg_edge (p,i) (q,j))
    : | i | = depth p <-> | j | = depth q.
  Proof.
    specialize (tcfg_edge_destruct' Hedge) as Hd.
    destruct Hd as [Hd|[Hd|[Hd|Hd]]].
    all: destructH.
    - subst. eapply basic_edge_eq_loop in Hd1. rewrite Hd1. reflexivity.
    - subst. eapply depth_entry in Hd1. rewrite <-Hd1. cbn.
      split;lia.
    - eapply back_edge_eq_loop in Hd1 as Hd2. rewrite Hd2. subst.
      destruct i.
      + exfalso.
        eapply tcfg_edge_back_nil;eauto.
      + cbn. lia.
    - eapply depth_exit in Hd1 as Hd2. rewrite Hd2. subst.
      destruct i.
      + exfalso. eapply tcfg_edge_exit_nil;eauto.
      + cbn. lia.
  Qed.

  Lemma tpath_tag_take_r_eq p i q j t h n
        (Hpath : TPath (q,j) (p,i) t)
        (Hincl : forall r, r map fst t -> loop_contains h r)
        (Hdep : depth h = n)
    : take_r (n-1) j = take_r (n-1) i.
  Admitted.

Lemmas with take_r


  Lemma taglt_take_r_taglt i j n
        (Hlt : take_r n i take_r n j)
        (Hlen : | i | = | j |)
    : i j.
  Proof.
    remember (|i| - n) as m.
    revert n i j Hlt Hlen Heqm.
    induction m;intros.
    - do 2 (rewrite take_r_geq in Hlt;[|lia]). auto.
    - destruct i;[cbn in Heqm;lia|].
      destruct j;[cbn in Hlen;lia|].
      econstructor.
      cbn in Hlen. replace (|n0 :: i|) with (S (|i|)) in Heqm by (cbn;auto).
      eapply IHm;auto.
      + do 2 (rewrite take_r_cons_drop in Hlt;[|lia]).
        eassumption.
      + lia.
  Qed.

  Lemma tagle_neq_taglt (i j : Tag)
    : i j -> i <> j -> i j.
  Proof.
    intros. destruct H;[assumption|contradiction].
  Qed.

  Lemma tagle_take_r i j n
        (Htagle : i j)
    : take_r n i take_r n j.
  Proof.
    destruct Htagle.
    - induction H.
      + decide (n <= |i|).
        * erewrite take_r_cons_replace;eauto. reflexivity.
        * rewrite take_r_geq. 2: cbn;lia.
          rewrite take_r_geq. 2: cbn;lia.
          left. econstructor;eauto.
      + decide (n <= |i|).
        * do 2 (rewrite take_r_cons_drop;eauto).
          erewrite <-Taglt_len;eauto.
        * do 2 (rewrite take_r_geq;[|cbn;try lia]).
          2: erewrite <-Taglt_len;eauto;lia.
          left.
          econstructor;eauto.
    - subst. reflexivity.
  Qed.

  Lemma taglt_leq i j m n
        (Htaglt : take_r m j take_r m i)
        (Hleq : m <= n)
        (Hleni : n <= |i|)
        (Hlenj : n <= |j|)
    : take_r n j take_r n i.
  Proof.
    eapply taglt_take_r_taglt.
    - do 2 (rewrite take_r_take_r_leq;eauto).
    - decide (n <= |i|).
      + do 2 (rewrite take_r_length_le;[|auto;lia]). reflexivity.
      + do 2 (rewrite take_r_length_ge;[|auto;lia]). lia.
  Qed.

  Lemma taglt_cons i j n
    : n :: i n :: j <-> i j.
  Proof.
    split.
    - intros. inv H.
      + lia.
      + auto.
    - intros. econstructor. auto.
  Qed.

  Lemma taglt_tagle (i j : Tag)
    : i j -> i j.
  Proof.
    intros. left. auto.
  Qed.

  Lemma loop_contains_depth_lt h p
        (Hloop : loop_contains h p)
    : depth p > 0.
  Proof.
    unfold depth.
    match goal with |- length ?x > 0 => enough (x <> []) end.
    - enough (depth p <> 0). 1:unfold depth in *;lia.
      contradict H.
      eapply length_zero_iff_nil. eauto.
    - intro N. eapply filter_nil;eauto.
  Qed.

  Lemma succ_in_tpath_tcfg_edge
    : forall (p q : Lab) (i j : Tag) (t : list Coord) (a b : Coord),
      TPath a b t -> (p, i) (q, j) | t -> tcfg_edge (q,j) (p,i).
    (* PROVEME (analogous to below lemma) *)
  Admitted.

  (* TODO: remove (after proof is adjusted to above lemma) *)
  Lemma succ_in_tpath_eff_tag p q i j t a b
        (Hpath : TPath a b t)
        (Hsucc : (p,i) (q,j) | t)
    : eff_tag q p j = Some i.
  Proof.
    unfold succ_in in Hsucc. destructH.
    revert dependent t. revert b. induction l2; cbn in *; intros.
    - rewrite Hsucc in Hpath. unfold TPath in Hpath. destruct b.
      inversion Hpath. subst. destruct b. inversion H3;subst;destruct H5;eauto.
    - destruct t. 1: inversion Hpath.
      inversion Hsucc. subst. inversion Hpath;subst. 1: congruence'.
      eauto.
  Qed.

  Lemma ex_pre_header s k h i t
        (Hhead : loop_head h)
        (Hpath : TPath (s,k) (h,0 :: i) t)
        (Hncont : ~ loop_contains h s)
    : exists pre, (pre, i) t /\ (pre,i) -t> (h,0 :: i) /\ entry_edge pre h.
  Proof.
    inv_path Hpath.
    - exfalso. eapply Hncont. eauto using loop_contains_self.
    - clear Hncont.
      destruct x as [q j].
      assert (Hedge := H0).
      destruct H0.
      unfold eff_tag in H1.
      decide (q --> h); try easy.
      destruct (edge_Edge e).
      + exfalso. eapply basic_edge_no_loop2; try eassumption.
      + destruct j; inv H1.
      + inv H1. exists q. split; [| firstorder ].
        right. eauto using path_contains_front.
      + destruct e0. exfalso. eapply no_exit_head; try eassumption.
  Qed.

End cfg.